21 research outputs found

    Cost-Bounded Active Classification Using Partially Observable Markov Decision Processes

    Get PDF
    Active classification, i.e., the sequential decision-making process aimed at data acquisition for classification purposes, arises naturally in many applications, including medical diagnosis, intrusion detection, and object tracking. In this work, we study the problem of actively classifying dynamical systems with a finite set of Markov decision process (MDP) models. We are interested in finding strategies that actively interact with the dynamical system, and observe its reactions so that the true model is determined efficiently with high confidence. To this end, we present a decision-theoretic framework based on partially observable Markov decision processes (POMDPs). The proposed framework relies on assigning a classification belief (a probability distribution) to each candidate MDP model. Given an initial belief, some misclassification probabilities, a cost bound, and a finite time horizon, we design POMDP strategies leading to classification decisions. We present two different approaches to find such strategies. The first approach computes the optimal strategy "exactly" using value iteration. To overcome the computational complexity of finding exact solutions, the second approach is based on adaptive sampling to approximate the optimal probability of reaching a classification decision. We illustrate the proposed methodology using two examples from medical diagnosis and intruder detection

    Scheduling for Urban Air Mobility using Safe Learning

    Full text link
    This work considers the scheduling problem for Urban Air Mobility (UAM) vehicles travelling between origin-destination pairs with both hard and soft trip deadlines. Each route is described by a discrete probability distribution over trip completion times (or delay) and over inter-arrival times of requests (or demand) for the route along with a fixed hard or soft deadline. Soft deadlines carry a cost that is incurred when the deadline is missed. An online, safe scheduler is developed that ensures that hard deadlines are never missed, and that average cost of missing soft deadlines is minimized. The system is modelled as a Markov Decision Process (MDP) and safe model-based learning is used to find the probabilistic distributions over route delays and demand. Monte Carlo Tree Search (MCTS) Earliest Deadline First (EDF) is used to safely explore the learned models in an online fashion and develop a near-optimal non-preemptive scheduling policy. These results are compared with Value Iteration (VI) and MCTS (Random) scheduling solutions.Comment: In Proceedings FMAS2022 ASYDE2022, arXiv:2209.1318

    Constrained Active Classification Using Partially Observable Markov Decision Processes

    Full text link
    In this work, we study the problem of actively classifying the attributes of dynamical systems characterized as a finite set of Markov decision process (MDP) models. We are interested in finding strategies that actively interact with the dynamical system and observe its reactions so that the attribute of interest is classified efficiently with high confidence. We present a decision-theoretic framework based on partially observable Markov decision processes (POMDPs). The proposed framework relies on assigning a classification belief (a probability distribution) to the attributes of interest. Given an initial belief, confidence level over which a classification decision can be made, a cost bound, safe belief sets, and a finite time horizon, we compute POMDP strategies leading to classification decisions. We present two different algorithms to compute such strategies. The first algorithm computes the optimal strategy exactly by value iteration. To overcome the computational complexity of computing the exact solutions, we propose a second algorithm is based on adaptive sampling to approximate the optimal probability of reaching a classification decision. We illustrate the proposed methodology using examples from medical diagnosis and privacy-preserving advertising.Comment: arXiv admin note: substantial text overlap with arXiv:1810.0009

    Cost-Bounded Active Classification Using Partially Observable Markov Decision Processes

    Get PDF
    Active classification, i.e., the sequential decision making process aimed at data acquisition for classification purposes, arises naturally in many applications, including medical diagnosis, intrusion detection, and object tracking. In this work, we study the problem of actively classifying dynamical systems with a finite set of Markov decision process (MDP) models. We are interested in finding strategies that actively interact with the dynamical system, and observe its reactions so that the true model is determined efficiently with high confidence. To this end, we present a decision-theoretic framework based on partially observable Markov decision processes (POMDPs). The proposed framework relies on assigning a classification belief (a probability distribution) to each candidate MDP model. Given an initial belief, some misclassification probabilities, a cost bound, and a finite time horizon, we design POMDP strategies leading to classification decisions. We present two different approaches to find such strategies. The first approach computes the optimal strategy “exactly” using value iteration. To overcome the computational complexity of finding exact solutions, the second approach is based on adaptive sampling to approximate the optimal probability of reaching a classification decision. We illustrate the proposed methodology using two examples from medical diagnosis and intruder detection
    corecore